Publications from the Sixt Lab (including our collaborative projects)
The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH (2024) Elife 12:RP87386
A multi-strategy antimicrobial discovery approach reveals new ways to combat Chlamydia
Ölander M, Rea Vázquez D, Meier K, Mooij L, Fredlund J, Puértolas-Balint F, Calpe E, Rayón Díaz M, van der Wal K, Schroeder BO, Sixt BS. A multi-strategy antimicrobial discovery approach reveals new ways to combat Chlamydia (2023) bioRxiv doi:10.1101/2023.11.30.569351
The Chlamydia effector CpoS modulates the inclusion microenvironment and restricts the interferon response by acting on Rab35
Meier K, Jachmann LH, Türköz G, Babu Sait MR, Pérez L, Kepp O, Valdivia RH, Kroemer G, Sixt BS (2023) mBio 14(4):e0319022
Bringing genetics to heretofore intractable obligate intracellular bacterial pathogens: Chlamydia and beyond
Ölander M, Sixt BS (2022) PLoS Pathog 18(7):e1010669
PubMed Link
Keeping the home intact – lessons from Chlamydia
Sixt BS (2022) Cell Host Microbe 30(4):475-479
PubMed Link
Ecology and evolution of chlamydial symbionts of arthropods
Halter T, Köstlbacher S, Collingro A, Sixt BS, Tönshoff ER, Hendrickx F, Kostanjšek R, Horn M (2022) ISME Communications 2:45
Link
Host cell death during infection with Chlamydia: a double-edged sword
Sixt BS (2021) FEMS Microbiol Rev 45(1): doi: 10.1093/femsre/fuaa043
PubMed Link
Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease
Schott BH, Antonia AL, Wang L, Pittman KJ, Sixt BS, Barnes AB, Valdivia RH, Ko DC (2020) Sci Rep: 10(1):18269
PubMed Link
Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage
´Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, Lemaitre F, Ferrere G, Derosa L, Duong CPM, Messaoudene M, Gagné A, Joubert P, De Sordi L, Debarbieux L, Simon S, Scarlata CM, Ayyoub M, Palermo B, Facciolo F, Boidot R, Wheeler R, Boneca IG, Sztupinszki Z, Papp K, Csabai I, Pasolli E, Segata N, Lopez-Otin C, Szallasi Z, Andre F, Iebba V, Quiniou V, Klatzmann D, Boukhalil J, Khelaifia S, Raoult D, Albiges L, Escudier B, Eggermont A, Mami-Chouaib F, Nistico P, Ghiringhelli F, Routy B, Labarrière N, Cattoir V, Kroemer G, Zitvogel LK (2020) Science 369(6506):936-942.
PubMed Link
Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae
Filcek K, Vielfort K, Muraleedharan S, Henriksson J, Valdivia RH, Bavoil PM, Sixt BS (2019) PLoS One 14(11):e0224324.
PubMed Link
Former Publications from the Group Leader
Chlamydia trachomatis fails to protect its growth niche against pro-apoptotic insults
Sixt BS, Núñez-Otero C, Kepp O, Valdivia RH, Kroemer G (2018) Cell Death Differ 26(8):1485-1500.
PubMed Link
Chlamydia anti-apoptosis – a by-product of metabolic reprogramming?
Sixt BS, Kroemer G (2017) EBioMedicine 23:2-3.
PubMed Link
Chlamydia trachomatis’ struggle to keep its host alive
Sixt BS, Valdivia RH, Kroemer G (2017) Microbial Cell 4(3):101-104.
PubMed Link
The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs
Sixt BS, Bastidas RJ, Finethy R, Baxter RM, Carpenter VK, Kroemer G, Coers J, Valdivia RH (2017) Cell Host Microbe 21(1):113-121.
PubMed Link
Molecular genetic analysis of Chlamydia species
Sixt BS, Valdivia RH (2016) Annu Rev Microbiol 70:179-98.
PubMed Link
Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities
Omsland A, Sixt BS, Horn M, Hackstadt T. (2014) FEMS Microbiol Rev 38(4):779-801.
PubMed Link
Developmental cycle and host interaction of Rhabdochlamydia porcellionis, an intracellular parasite of terrestrial isopods
Sixt BS, Kostanjšek R, Mustedanagic A, Toenshoff ER, Horn M (2013) Environ Microbiol 15(11):2980–2993.
PubMed Link
Metabolic features of Protochlamydia amoebophila elementary bodies – a link between activity and infectivity in chlamydiae
Sixt BS, Siegl A, Müller C, Watzka M, Wultsch A, Tziotis D, Montanaro J, Richter A, Schmitt-Kopplin P, Horn M (2013) PLoS Pathog 9(8):e1003553.
PubMed Link
Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells
Sixt BS, Hiess B, König L, Horn M (2012) PLoS One 7(1):e29565.
PubMed Link
Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila
Sixt BS, Heinz C, Pichler P, Heinz E, Montanaro J, Op den Camp HJM, Ammerer G, Mechtler K, Wagner M, Horn M (2011) Proteomics 11(10):1868-1892.
PubMed Link
Raman microspectroscopy reveals long-term extracellular activity of chlamydiae
Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, Pichler P, Mechtler K, Müller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M (2010) Mol Microbiol 77(3):687-700.
PubMed Link
Proteomic aspects of Parachlamydia acanthamoebae infection in Acanthamoeba spp.
Leitsch D, Köhsler M, Marchetti-Deschmann M, Deutsch A, Allmaier G, König L, Sixt BS, Duchêne M, Walochnik J (2010) ISME J 4(11):1366-1374.
PubMed Link